### Evaluation of the capacity of melanin produced from C. neoformans to shield or attenuate X-rays (XR) via XR–WASOS Radiography



**MELANIN DISK** 

**Johns Hopkins University Bloomberg School of Public Health Department of Molecular Microbiology and Immunology** 

Jesús M. García-Figueroa Supervised by: Radamés JB Cordero

#### **MELANIN CUVETTES**

Mycelium from NASA

Arturo Casadevall's Group Meeting Wednesday, April 26, 2023 | 11:00 AM EDT W5316 | ZOOM Meetings





## The electromagnetic spectrum is the range of frequencies generated by electromagnetic waves, and it is omnipresent in our daily lives.



The absorption or harvesting of energy from the electromagnetic spectrum is dependent upon how the waves interact with their environment, such as solids (e.g. plastics), gases in the atmosphere, and liquids (e.g. water or gasoline).

|              |       | Wavelength<br>(m)  | Frequency<br>(Hz)                   | Photon Energy<br>(eV)                            |
|--------------|-------|--------------------|-------------------------------------|--------------------------------------------------|
| Rays         |       | <b>10</b> –12      | 10 <sup>20</sup> – 10 <sup>24</sup> | ≥ 10 <sup>6</sup>                                |
| /S           |       | <b>10</b> –10      | 10 <sup>17</sup> – 10 <sup>20</sup> | 10 <sup>2</sup> – 10 <sup>5</sup>                |
| let          |       | <b>10</b> –8       | 10 <sup>15</sup> – 10 <sup>17</sup> | 10 <sup>1</sup> – 10 <sup>2</sup>                |
| e            | <br>_ | <b>10</b> –6       | <b>10</b> <sup>14</sup>             | 10 <sup>0</sup> – 10 <sup>1</sup>                |
| d            | <br>_ | <b>10</b> –5       | 10 <sup>13</sup> – 10 <sup>14</sup> | <b>10</b> <sup>-2</sup> – <b>10</b> <sup>0</sup> |
| ves<br>uency |       | ≤ 10 <sup>-2</sup> | <b>≤ 10</b> <sup>13</sup>           | <b>≤ 10</b> –²                                   |

The unique chemical structure of melanins produced by the fungus *C. neoformans* makes it an ideal candidate for producing materials that are capable of absorbing, shielding, and harvesting energy from any region of the electromagnetic spectrum.



This project seeks to explore if and how the melanin produced by *C. neoformans* has the ability to protect and nurture us with energy from the electromagnetic waves coming from the entire spectrum.







**Pyomelanin** 

## We call the systems capable of doing this Wave Absorption/Shielding Observance Systems (WASOS) reflecting on the interaction between waves and melanins as materials that we want to observe.



This type of system is made possible by today's technological advancements, allowing us to observe waves from all regions of the electromagnetic spectrum.





One should take into account that the design of every WASOS requires a specific type of generator, detector, and conduit that is suitable for each kind of wavelength.

Here is a vision for the future of a WASOS: sleek, modern, and optimized design.

| WASOS<br>Type | Frequency<br>(Hz)                   | Types of Generator                                                         | Types of Detectors                                                                                | Types of<br>Conduit                               |
|---------------|-------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------|
| MW            | 10 <sup>9</sup> – 10 <sup>11</sup>  | <ul> <li>Power Grid Tubes</li> <li>Cross Field Amplifiers</li> </ul>       | <ul> <li>Peak Detectors</li> <li>Network analyzers</li> <li>Root Mean Square Detectors</li> </ul> | <ul><li>Black Steel</li><li>Aluminium</li></ul>   |
| IR            | 10 <sup>11</sup> – 10 <sup>14</sup> | <ul><li>Luminous Sources</li><li>Non-Luminous Sources</li></ul>            | <ul> <li>Thermal Detectors</li> <li>Photoconductivity Detectors</li> </ul>                        | <ul><li>Glass</li><li>Vantablack</li></ul>        |
| VL            | 10 <sup>14</sup> – 10 <sup>14</sup> | <ul> <li>Discharge Lamps</li> <li>Incandecent Lamps</li> </ul>             | <ul> <li>Basic Diode arrya</li> <li>High-end Doide arrya</li> </ul>                               | <ul><li>Black Steel</li><li>Vantablck</li></ul>   |
| UV            | 10 <sup>14</sup> – 10 <sup>16</sup> | <ul> <li>UV-ABlack Light</li> <li>Argon Lamps</li> </ul>                   | <ul> <li>Basic Diode arrya</li> <li>High-end Doide arrya</li> </ul>                               | <ul><li>Polyethylene</li><li>Vantablack</li></ul> |
| XR            | 10 <sup>16</sup> – 10 <sup>19</sup> | <ul> <li>Single Phase Generator</li> <li>Three Phase Generators</li> </ul> | <ul> <li>Gas-Filled Detectors</li> <li>Semiconductor Detectors</li> </ul>                         | • Lead<br>• Aluminium                             |

Where MW stands for microwave radiation, IR stands for infrared radiation, VL stands for visible light, UV stands for ultraviolet radiation, and XR stands for x-rays.

We began by precisely identifying the design specifications of each WASOS, and organizing the parameters and equipment in a tabulated format.

**XR-WASOS** Radiography System



X-ray Generator

Sample with **Good Shielding** Ability

Radiography **Cassette with Radiography Film** 

The method allows us to use the XR-WASOS to analyze the radiography film and measure the shielding percentage and shielding equivalent aluminum (AI) thickness of our samples.

This presentation provides an in-depth overview of the XR-WASOS Radiography method and its capabilities.

Analysis of the Radiography Film





Here is the procedure for estimating the shielding percentage and equivalent aluminum thickness of our using XR-WASOS Radiography:



Film

The main distinction between these techniques is that the shielding percentage is determined using a two-point simple calibration method, which is more analytical in nature, while the equivalent AI thickness is based on ASTM F640 – 20, and is more graphical in approach.





#### Radiography Film no exposed to x-rays



**Radiography Film Exposed to x**ray at 48 kVp for 3.33s

Y > Shielding Percentage (%) X > Mean Gray Value (MGV)

Here is how we calculate the shielding percentage of our samples.



Mean Gray Value (MGV)

 $\mathbf{Y} = \mathbf{m}^* \mathbf{X} + \mathbf{b}$ 

**m > Slope (%/MGV)** b > Intercept (%)



Film no exposed to x-rays



**Radiography Film no** exposed to x-rays





Film Exposed to x-ray at 48 kVp for 3.33s

**Radiography Film Exposed to x**ray at 48 kVp for 3.33s

Here is how we determine the maximum and minimum mean gray values under the shielding percentage technique.

#### Calibration Parameters for the Shielding **Percentage Method**

| Parameter     | Value  |        |  |
|---------------|--------|--------|--|
| Y (%)         | 0      | 100    |  |
| X (MGV)       | 10.839 | 233.30 |  |
| Slope (%/MGV) | (      | 0.450  |  |
| Intercept (%) |        | 4.872  |  |



### Here is how we estimate the equivalent AI thickness of our samples.



**AI Step-Wedge** 



**Radiograph of an AI Step-Wedge** 

Y > Difference in MGV (MGV)

Value

**Mean Gray** 

(MGV)

**Difference in** 

**Difference in** MGV





**Al Step-Wedge** 



**Scanned Radiography of the** Al Step-Wedge

Here is how we can accurately calibrate XR-WASOS for measuring the equivalent AI thickness of our samples. This process ensures that our measurements are precise and reliable.





Y [MGV] = -13.809\*X [mm Al] + 212..12  $R^2 = 0.9545$ 







**3D-Printed Blocks made of Gray PLA with Different Infill** Percentages

**3D-Printed Blocks made of Gray PLA with Different Thickness** and 20% Infill Percent

One can analyze the shielding percentages and equivalent AI thicknesses for a diversity of using XR-WASOS Radiography.



**Disk made of PLA**melanin



**Compressed Mycelium** from NASA



**Cuvettes with Melanin Powders** 



**Cuvettes with Powders** and Melanin from C. neoformans







### The method demonstrated a high level of sensitivity to the sample's mass.





**3D-Printed Blocks made of Gray PLA with Different Infill** Percentages

### The method demonstrated a high level of sensitivity to the thickness sample's thickness.



80 60 Mass (g) 40 20 0 25 0

3D-Printed Blocks made of Gray PLA with Different Thickness and 20% Infill Percent



Thickness (mm)

## XR-WASOS radiography reveals no considerable variation in shielding values depending on the distance between the sample and the radiography cassette.



|                                           | Crypto (L-DOP<br>30mm |
|-------------------------------------------|-----------------------|
| Mass (g)                                  | 2.610                 |
| Thickness (mm)                            | 10.02                 |
| Shielding Percentage (%)                  | 14.10                 |
| Equiv Al Thickness (mm Al)                | 1.74                  |
| CONTROL Shielding Percentage (%)          | 0.66                  |
| <b>CONTROL Equiv AI Thickness (mm AI)</b> | - 0.63                |





| A) |
|----|
|----|

| Crypto (L-DOPA)<br>60 mm | Crypto (L-DOPA)<br>90 mm |  |
|--------------------------|--------------------------|--|
| 2.610                    | 2.610                    |  |
| 10.02                    | 10.02                    |  |
| 14.27                    | 14.38                    |  |
| 1.77                     | 1.79                     |  |
| 0.51                     | 0.75                     |  |
| - 0.66                   | - 0.62                   |  |

Preliminary analysis via XR-WASOS radiography has revealed that, when grouped together, cuvettes containing powders show that melanin produced from *C. neoformans* and other sources shields X-rays less effectively than melanin from *sepia* that has been hydrolyzed.



| Mass<br>(g) | Thickness<br>(mm) | Shielding<br>Percentage<br>(%) | Equiv Al<br>Thickness<br>(mm Al) |
|-------------|-------------------|--------------------------------|----------------------------------|
| 2.435       | 10.02             | 4.72                           | 0.09                             |
| 2.736       | 10.02             | 10.12                          | 1.04                             |
| 2.897       | 10.02             | 12.65                          | 1.49                             |
| 3.027       | 10.02             | 24.15                          | 3.52                             |
| 2.941       | 10.02             | 13.17                          | 1.58                             |
| 2.610       | 10.02             | 10.99                          | 1.19                             |
|             |                   | 0.90                           | - 0.59                           |





Air Fiberglass **Beach's Sand** Aluminum Powder Crypto (L-DOPA)

CONTROL

### We also discovered that when in groups, analysis revealed that cuvettes filled with powders of melanin produced from *C neoformans* did not shield x-rays as effectively as fiberglass, sand beach, or aluminum powder.

| Mass<br>(g) | Thickness<br>(mm) | Shielding<br>Percentage<br>(%) | Equiv Al<br>Thickness<br>(mm Al) |
|-------------|-------------------|--------------------------------|----------------------------------|
| 2.435       | 10.02             | 17.26                          | 2.30                             |
| 2.761       | 10.02             | 65.02                          | 10.75                            |
| 3.639       | 10.02             | 99.59                          | 16.86                            |
| 3.151       | 10.02             | 85.10                          | 14.30                            |
| 2.610       | 10.02             | 33.15                          | 5.11                             |
|             |                   | 0.69                           | - 0.63                           |



## An analysis of powders in Petri dishes has revealed that melanin from *C neoformans* shields X-rays moderately well when compared to autoclaved charcoal and distilled water.









|                                    | Air    |
|------------------------------------|--------|
| Mass (g)                           | 5.188  |
| Thickness (mm)                     | 11.92  |
| Shielding Percentage (%)           | 6.10   |
| Equiv Al Thickness (mm Al)         | 0.33   |
| CONTROL Shielding Percentage (%)   | 1.19   |
| CONTROL Equiv AI Thickness (mm AI) | - 0.54 |















| Crypto<br>(L-DOPA) | Aluminum | Charcoal | Distilled<br>Water |
|--------------------|----------|----------|--------------------|
| 6.856              | 12.100   | 7.169    | 15.623             |
| 11.92              | 11.92    | 11.92    | 11.92              |
| 9.11               | 39.29    | 9.39     | 7.78               |
| 0.86               | 6.19     | 0.91     | 0.63               |
| 0.71               | 1.49     | 1.15     | 1.27               |
| - 0.62             | - 0.49   | - 0.55   | - 0.53             |
|                    |          |          |                    |

## Analysis of PLA-Melanin disks indicates that the presence of *C neoformans* decreases the effectiveness of PLA to attenuate X-rays when compared to aluminum, charcoal, or polystyrene.







|                                           | PLA    |
|-------------------------------------------|--------|
| Mass (g)                                  | 9.839  |
| Thickness (mm)                            | 6.93   |
| Shielding Percentage (%)                  | 11.89  |
| Equiv Al Thickness (mm Al)                | 1.35   |
| <b>CONTROL Shielding Percentage (%)</b>   | 0.95   |
| <b>CONTROL Equiv AI Thickness (mm AI)</b> | - 0.58 |











| PLA-<br>Crypto | PLA-<br>Aluminum | PLA-<br>Charcoal | PLA-<br>Polystyre |
|----------------|------------------|------------------|-------------------|
| 9.452          | 9.385            | 9.984            | 9.258             |
| 6.66           | 6.56             | 6.97             | 6.18              |
| 8.56           | 11.89            | 9.94             | 16.44             |
| 0.76           | 1.35             | 1.01             | 2.15              |
| 0.63           | 0.49             | 0.70             | 1.01              |
| - 0.64         | - 0.66           | - 0.63           | - 0.57            |
|                |                  |                  |                   |



### An analysis of PLA-Melanin disks demonstrates that C neoformans has a decreased capacity to shield X-rays when compared to synthetic melanin, melanin from sepia, or melanin from exophiala.







|                                         | PLA    |
|-----------------------------------------|--------|
| Mass (g)                                | 9.839  |
| Thickness (mm)                          | 6.93   |
| Shielding Percentage (%)                | 11.89  |
| Equiv Al Thickness (mm Al)              | 1.35   |
| <b>CONTROL Shielding Percentage (%)</b> | 1.19   |
| CONTROL Equiv AI Thickness (mm AI)      | - 0.54 |



| PLA-<br>Crypto | PLA-Sepia<br>(Lyophilized) | PLA-<br>Exophiala | PLA-<br>Synthetic |
|----------------|----------------------------|-------------------|-------------------|
| 9.452          | 9.930                      | 9.868             | 9.893             |
| 6.66           | 7.45                       | 6.88              | 6.83              |
| 8.56           | 11.82                      | 10.03             | 10.08             |
| 0.76           | 1.34                       | 1.02              | 1.03              |
| 0.71           | 1.27                       | 0.77              | 0.99              |
| - 0.62         | - 0.53                     | - 0.61            | - 0.58            |

![](_page_20_Picture_7.jpeg)

![](_page_21_Picture_1.jpeg)

![](_page_21_Picture_2.jpeg)

![](_page_21_Picture_3.jpeg)

|                                    | PLA    |
|------------------------------------|--------|
| Mass (g)                           | 9.839  |
| Thickness (mm)                     | 6.93   |
| Shielding Percentage (%)           | 11.89  |
| Equiv Al Thickness (mm Al)         | 1.35   |
| CONTROL Shielding Percentage (%)   | 1.19   |
| CONTROL Equiv AI Thickness (mm AI) | - 0.54 |

An analysis of PLA disks has revealed that melanin from C neoformans reduces the effectiveness of PLA in X-ray shielding. This could be attributed to the differing binding of oxygen and carbon atoms when compared to polystyrene, silica gel, or sand beach as a blender.

![](_page_21_Picture_7.jpeg)

![](_page_21_Picture_8.jpeg)

![](_page_21_Picture_9.jpeg)

![](_page_21_Picture_10.jpeg)

![](_page_21_Picture_11.jpeg)

| PLA-<br>Crypto | PLA-<br>Polystyrene | PLA-Silica<br>Gel | PLA-Sanc<br>Beach |
|----------------|---------------------|-------------------|-------------------|
| 9.452          | 9.258               | 9.447             | 9.755             |
| 6.66           | 6.18                | 7.17              | 6.68              |
| 8.56           | 16.44               | 19.75             | 11.24             |
| 0.76           | 2.15                | 2.74              | 1.24              |
| 0.71           | 1.01                | 1.62              | 0.58              |
| - 0.62         | - 0.57              | - 0.46            | - 0.65            |
|                |                     |                   |                   |

![](_page_21_Picture_13.jpeg)

### When in groups, analysis of cuvettes with powders shows melanin produced from C. neoformans and its doped forms might shield X-ray more or less depending on what other powder surrounds them.

![](_page_22_Picture_1.jpeg)

Air

Crypto (L-DOPA) with Iron

Crypto (L-DOPA) with Zinc

Crypto (L-DOPA) with Copper

Crypto (L-DOPA)

CONTROL

| Mass<br>(g) | Thickness<br>(mm) | Shielding<br>Percentage<br>(%) | Equiv Al<br>Thickness<br>(mm Al) |
|-------------|-------------------|--------------------------------|----------------------------------|
| 2.435       | 10.02             | 10.43                          | 1.10                             |
| 2.422       | 10.02             | 20.10                          | 2.81                             |
| 2.460       | 10.02             | 17.52                          | 2.35                             |
| 2.452       | 10.02             | 12.65                          | 1.49                             |
| 2.610       | 10.02             | 19.43                          | 2.69                             |
|             |                   | 0.53                           | - 0.66                           |

![](_page_22_Figure_9.jpeg)

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_2.jpeg)

![](_page_23_Picture_3.jpeg)

![](_page_23_Picture_4.jpeg)

|                                  | NASA 1 |
|----------------------------------|--------|
| Mass (g)                         | 662.7  |
| Thickness (mm)                   | 152.76 |
| Shielding Percentage (%)         | 62.5   |
| Equiv Al Thickness (mm Al)       | 10.30  |
| CONTROL Shielding Percentage (%) | 0.58   |

- 0.65 **CONTROL Equiv AI Thickness (mm AI)** 

Ν

An in-depth analysis of compressed mycelium has revealed that compressed melanin from C neoformans cloudless have a better chance for shielding us against x-rays.

![](_page_23_Picture_9.jpeg)

![](_page_23_Picture_10.jpeg)

![](_page_23_Picture_11.jpeg)

![](_page_23_Picture_12.jpeg)

![](_page_23_Picture_13.jpeg)

![](_page_23_Picture_14.jpeg)

| IASA 2 | NASA 3 | NASA 4 | NASA 5 |
|--------|--------|--------|--------|
| 69.0   | 67.4   | 91.3   | 5.5    |
| 141.56 | 138.49 | 64.01  | 163.75 |
| 67.44  | 79.39  | 91.43  | 61.16  |
| 11.18  | 13.29  | 15.42  | 10.06  |
| 0.83   | 0.60   | 1.05   | 0.74   |
| - 0.60 | - 0.64 | - 0.56 | - 0.62 |
|        |        |        |        |

This was made possible by employing XR-WASOS Radiography in combination with two analysis techniques developed by Johns Hopkins University Bloomberg School of Public Health.

The technique we have developed allows us to compare the effectiveness of melanin produced from C neoformans in shielding x-rays compared to other materials, regardless of their mass or thickness.

The initial assessment of this method indicates that melanin from C neoformans can be optimized as a more effective x-ray shielding material.

— — By changing how we synthesize it

— — By coupling it with other materials, selectively

— — By compressing it, as is for the case of mycelium

We can quantify the extent to which melanin produced by C neoformans can act as a shield against x-rays.

### **Future Works**

![](_page_25_Picture_1.jpeg)

### **Optimizing the XR-WASOS**

![](_page_25_Picture_3.jpeg)

#### **UV-WASOS Generator**

![](_page_25_Picture_5.jpeg)

**RF (MW)-WASOS** 

![](_page_25_Picture_7.jpeg)

#### Visible Red and NIR-WASOS Generator

# Thank You!

![](_page_26_Picture_1.jpeg)

![](_page_26_Picture_2.jpeg)

![](_page_26_Picture_3.jpeg)

### UNIVERSITY of OCHESTER

![](_page_26_Picture_5.jpeg)

![](_page_26_Picture_6.jpeg)